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Abstract

We discuss branch points of affine coverings and their effects on Veech groups. In particular,
this allows us to show that even if one polygon tiles another, the respective Veech groups are
not necessarily commensurable. We also show that there is no universal bound on the number of
Teichmüller disks passing through the same point of Teichmüller space and having incommensurable
lattice Veech groups. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most accessible problems in physics and mathematics would seem to be that
of the dynamics of a particle elastically reflected by the walls of a Euclidean polygon. This
seemingly innocuous problem, generically calledbilliards, offers interest already in the
case of rational polygons, where all angles are rational multiples ofπ . Here the phase space
decomposes into invariant surfaces for the natural billiard flow.

The study of this billiard flow leads to quadratic differentials and Teichmüller space; for
a survey on these matters, see [18]. This machinery has allowed such beautiful results as
Masur’s [17] density of periodic geodesics and the Kerkhoff–Masur–Smillie result [12],
see also [1], on unique ergodicity of the flow (on each invariant surface). These results are
in general true for almost every direction. Veech [21,22] gave explicit examples for which
the billiard flow behaves like the linear flow on the torus: in each direction the flow is either
periodic or it is uniquely ergodic.
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The passage from billiards on a rational polygon to quadratic differentials is fairly natural.
Speaking loosely, instead of following the trajectory of a particle as it reflects off a wall
(i.e., edge), one can instead flip the polygon about the edge. This process defines a surface
(in fact a Riemann surface, see below for references), and a quadratic differential on the
surface. Actually, the quadratic differential that one finds is the square of a holomorphic
1-form. The surface being constructed from pieces of the plane has a locally flat structure
with singularities. Veech had the insight to emphasize self-maps of such surfaces which are
locally affine with respect to the flat structure. The matrices which are the derivatives of
these affine maps form a group, the Veech group. Veech showed that whenever this group
is of finite covolume, one has the above dichotomy for the directions of flow: the flow in
each direction is either periodic or it is uniquely ergodic.

There are various examples known of Veech groups which are lattices [5,11,21–24]; i.e.,
of finite covolume. There are also various results, especially of Gutkin and Judge [6,7] and
Kenyon and Smillie [11], indicating that these are rare.

Here we emphasize coverings of surfaces and pull-backs of forms in order to study
relationships between Veech groups. The use of coverings in the study of Veech groups is
already well established, especially by Vorobets [23] and by Gutkin and Judge. We use an
algebraic approach for which the results and techniques of Aurell and Itzykson [3] are quite
helpful.

Our main results are given as Theorems 1 and 2. We show that there is no universal upper
bound on the number of non-commensurable lattice Veech groups that can be associated to a
single Riemann surface. To this date, explicit examples only showed that this number could
be as large as 2, see [5]. We also give both algebraic and geometric proofs showing that
tiling of rational polygons by way of flipsdoes notnecessarily preserve commensurability
of Veech groups of the related surfaces. We thank J. Smillie for pointing out to us that a
remark in passing of Vorobets [23] already points to such counter-examples.

Our techniques are a clear use of ramification in coverings of the type treated by Gutkin–
Judge and Vorobets. We combine this with fundamental work of Gutkin–Judge and
Vorobets (see Theorem A), all eventually based upon the pioneering work of Veech (see
Theorem B).

2. Background: translation structures and Veech groups

A surface is said to have atranslation structureif it is equipped with a fixed atlas for
which the transition functions are translations inR2. Translation structures are most naturally
discussed in terms of holomorphic 1-forms.

There is a natural construction, apparently due to [10], of a surface with translation (also
called flat or Euclidean) structure and conical singularities (see [20] for these terms) directly
related to the billiard flow on a table formed by a rational polygon. Let us discuss the case
of rational triangles.

Notation. LetT (p, q, r) be the rational Euclidean triangle whose angles arepπ/n, qπ/n,
rπ/n, wheren = p + q + r and 1=g.c.d.(p, q, r) (see Fig. 4).
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By an unfolding process, one follows the straight line paths on 2(p+q+ r) copies of the
triangle. The free edges can be identified so as to obtain a surface with a translation structure.
This construction allows one to pull-back dz from the plane and thus identify a 1-form on the
surface, and thereby the holomorphic structure such that the form is holomorphic, see say
[19]. The actual equation of the surface and the identification of the form were apparently
not given until [3], see also [24]. The surface is the smooth Riemann surface associated to
the equationyp+q+r = xp+r (1− x)q+r , and the form there is dx/y. This follows from an
application of the Schwarz triangle function.

In the other direction, by integrating a holomorphic 1-form on a Riemann surface, one
obtains charts of local coordinates which give the surface a translation structure with conical
singularities at the zeros of the 1-form, again see [20]. Of course, the groupSL(2,R) has
its usual action onR2; by composing this action with the local coordinate functions, one
obtains an action ofSL(2,R) on the set of atlases on the surface. Each of the atlases so
found also corresponds to a 1-form. Kerkhoff et al. [12] showed that theSL(2,R) orbit of
a holomorphic 1-form is the unit cotangent space to the so- called Teichmüller disk of the
1-form. See [5] for a very clear exposition of these matters.

2.1. Affine functions and Veech groups

Let us fix a formω on a Riemann surfaceM and letZ(ω) denote the set of the zeros ofω.
LetM ′ := M\Z(ω). A diffeomorphismf : M ′ → M ′ which extends to a homeomorphism
fromM to itself is calledaffinewith respect to the translation structure onM induced by
ω if the derivative off is constant in the charts ofω and is given by some fixed element
A ∈ SL(2,R). Note that this definition requires that the extension off and its inverse send
Z(ω) to itself (permutation of this set is allowed).

Away from zeros ofω, locallyf (z) = Az+ci , where theci depend only on the chart ofz.
The set of all such functions is called the affine group ofω, Aff (ω). The Veech group,0(ω),
is the group of matrices representing the derivatives of the affine functions. In fact, Veech
[21] shows that the object of main interest is this group taken up to projective equivalence;
i.e., we need only consider the image of0 in PSL(2,R). In what follows, we will indeed
simply write0(ω) for this corresponding subgroup ofPSL(2,R).

Each Teichmüller disk with its so-called Teichmüller metric is isometric to the hyperbolic
plane, thus hasPSL(2,R) as full isometry group, see say [5]. Veech also showed that by
way of the isometry0(ω) acts discontinuously on the disk ofω, Dω. (In fact, Veech gave
his results in the general setting of quadratic differentials. Now, the square of a 1-form is
indeed a quadratic differential, and see say work of Kra [13], all quadratic differentials
in the Teichmüller disk of a square quadratic differential are of this same type. By tacitly
using the squares of our holomorphic 1-forms where necessary, we continue in our slightly
simplified setting.)

As0(ω) is a subgroup ofPSL(2,R)which acts discontinuously on the hyperbolic plane,
0(ω) is a Fuchsian group. The quotient of the diskDω by0(ω) is a Riemann surface (with
hyperbolic structure induced by the Teichmüller metric) inside the Riemann moduli space
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of M. A result of Masur implies that this surface cannot be compact. See [8,9] for some
remarks on the possible relationship of this new surface toM.

In the setting of polygonal billiards, Veech demonstrated a direct relationship between a
certain dynamical zeta function of the system and the hyperbolic metric of the new surface.
He also calculated the Veech groups for a particular set of examples. In the ensuing decade,
there have been some more examples discovered and various results obtained which indicate
that the Veech group is rarely non-trivial.

2.2. Marking extra points

It is convenient to consider translation structures with some removable singularities
marked. We introduce notation for this purpose.

Notation. Let P(ω; {p1, . . . , pn}) denote the translation structure on a surfaceM given
by the 1-formω and having marked pointsp1, . . . , pn as well as the zeros ofω. Given
P of this sort, letM ′′ beM (having the structure ofω) with bothZ(ω) and the set of the
pi removed. The affine group,Aff(P), for such a marked translation structure is the group
of the affine diffeomorphisms which restrict so as to takeM ′′ to itself. The Veech group,
0(P), is then the derivatives of these affine diffeomorphisms.

For a fixed surfaceM, and marked structuresP andQ, we writeP ⊂ Q if the marked
structures have the same underlying 1-form, and the marked points ofP are amongst those
of Q.

Recall that a subgroup ofPSL(2,R) is called alattice if it acts discontinuously on the
hyperbolic plane and the corresponding quotient is of finite volume. The following lemma
was implied in a message from C. Judge.

Lemma 1. LetP andQ, P ⊂ Q, be as above. Then both0(P) and0(Q) are subgroups
of0(ω). Furthermore, there is a finite index subgroup of0(Q)which is contained in0(P).
If 0(Q) is a lattice, then so are0(P) and0(ω).

Proof. We show thatAff(P) ⊂ Aff(ω). For this, it suffices that any affine diffeomorphism
takingM \ {p1, . . . , pn} to itself can be extended so as to take the set of thepi to itself.
The diffeomorphism onM clearly acts as a permutation onZ(ω) ∪ {pi}.

A diffeomorphism cannot remove any singularity of the translation structure which arises
as an element ofZ(ω). (Indeed, the order of a zero of the 1-form is invariant.) Thus, it in fact
permutes thepi . That is, the restriction toM ′ gives an element ofAff(ω). These arguments
clearly show thatAff(Q) ⊂ Aff(ω) as well.

Suppose that the marked points ofQ, in addition to those ofP, comprise the set
{q1, . . . , qm}. The previous paragraph shows that eachf ∈ Aff(Q) naturally gives a permu-
tationf̄ on{p1, . . . , pn}∪{q1, . . . , qm}. This defines a group homomorphism fromAff(Q)
to the symmetric groupSym({p1, . . . , pn}∪{q1, . . . , qm}). The kernel of this homorphism
is a finite index subgroup ofAff(Q) which acts as the trivial permutation on{p1, . . . , pn}.
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Hence, this finite index subgroup ofAff(Q) is contained inAff(P). Therefore,0(Q) has a
finite index subgroup contained in0(P).

If a Fuchsian group has finite covolume, then so does any of its finite index subgroups.
Also if any subgroup of a Fuchsian group has finite covolume, then the group itself does.
Hence, we conclude that if0(Q) is a lattice, then so are0(P) and0(ω). �

2.3. Translation and affine coverings

We say that a mapf : M → N gives atranslation coveringof (N,Q) by (M,P)
if the restrictionf : M ′′ → N ′′ is such thatψ ◦ f ◦ φ−1 are translations whereψ and
φ are the (various appropriate choices of the) local coordinates for the atlases ofP and
Q, respectively. Note that a translation covering is in particular a holomorphic (ramified)
covering of the corresponding Riemann surfaces.

Similarly, we say that a mapf gives anaffine coveringof (N,Q) by (M,P) if the
restrictionf : M ′′ → N ′′ is such that the aforementioned compositions are of the form
Az+ ci,j whereA is a fixed matrix inSL(2,R), but the translation vectorsci,j may vary
with the choice of charts. Note that an affine covering is in particular a quasi-conformal
(ramified) covering of the corresponding Riemann surfaces.

Let B be any matrix inSL(2,R). We define(M,B ◦ P) by replacing the coordinate
functions of the translation structure of(M,P) by their post-composition withB. Let f
give an affine covering of(N,Q) by (M,P). If A is the matrix of the derivative off , then
we definef A to be the covering of(N,Q) by (M,A ◦ P). Similarly, we definefA to be
the covering of(N,A−1 ◦Q) by (M,P). The following can be found in [23].

Lemma 2. Letf give an affine covering of(N,Q) by (M,P). LetA be the matrix of the
derivative off . Then bothf A andfA are translation coverings.

Proof. This follows by simply writing out the compositions which occur in the definition
of an affine covering. �

Remark. As indicated in Section1 background, there is of course a precise technical
definition of the term “Teichmüller disk”, again see say[5]. More immediate in our setting
is the idea of the unit cotangent space of a Teichmüller disk. This is the set of translation
surfaces which admit an affine covering of degree 1 to some fixed translation surface. This
is, it is the set of surfaces given by the action of SL(2,R) on the atlas of the fixed translation
surface. Each translation surface has a natural marked vertical direction, given by the
pull-back of the vertical lines ofR2. The Teichmüller disk corresponding to our cotangent
space is given by forgetting these marked directions— this indeed allows one to pass from
cotangent vector to basepoint in the disk. Note that this is morally equivalent to identifying
points in the cotangent space in the same SO(2,R)-orbit.

Remark. From Lemma2, by a change of surface in either the Teichmüller disk of M or in
that of N, we can replace an affine coveringf : M → N by a translation covering. Thus,
we may assume that f is a (ramified) covering of Riemann surfaces.
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2.4. Pulling-back 1-forms

Let f : M → N be a holomorphic map of Riemann surfaces andα a 1-form onN .
Then the pull-back,f ∗α is a 1-form onM. The following is related to a discussion in [6].
Recall that the ramification points off are those points ofM where the derivative off
vanishes, let us denote these byZ(f ′). The branch points off are the images underf of
the ramification points, let us denote them byBr(f ).

Lemma 3. Letf : M → N be a holomorphic map of Riemann surfaces andα a 1-form on
N . LetS be the union of Br(f ) and any set of points ofN ; letT = f−1(S ). If A = P(α;S )
andB = P(f ∗α; T ), then the mapf gives a translation covering of(N,A) by (M,B).

Proof. To be a translation covering,f must in particular send the marked points of(M,B)
to those of(N,A). Now, the zeros off ∗α aref−1Z(α)∪Z(f ′). Indeed, an easy calculation
shows that iff is locally of the formt 7→ t r =: z andα is locally of the formze dz, then
f ∗α is of the formrt(e+1)r−1 dt . Thus,f sendsZ(f ∗α) toZ(α)∪ Br(f ). By definition,f
sendsT to S.

As well, the marked points of(N,A) must have as pre-image those of(M,B). Now,
f−1(Z(α) ) is clearly contained inZ(f ∗α). Again by definition, the inverse image ofS isT .

Recall that the local coordinates for the atlas induced byα are given by integration of
α on N . Those off ∗α are given by a change of variables in the same manner. That is,
fixing t0, not a zero off ∗α onM, local coordinates are given byφ(t) = ∫ t

t0
f ∗α. But, then

φ(t) = ∫ f (t)
f (t0)

α. Hence, the images of the coordinate functions for the atlas off ∗α equal
those of the corresponding coordinate functions of the atlas ofα. Hence,f gives a covering
of N ′′ by M ′′ which preserves translation structure. As we have already shown that the
marked points have appropriate images underf and its inverse,f does give a translation
covering. �

Remark. In the above lemma, one can remove the setf−1(S ) ∩ Z(f ∗α) fromT . This is
as for anyU , the zeros off ∗α are marked points forP(f ∗α;U).
2.5. Commensurability results

Given a general translation or affine covering of(N,Q) by (M,P), it seems unclear as
to exactly how0(P) and0(Q) are related. There is, however, some vague knowledge of
their relationship. Recall that subgroups ofPSL(2,R) are said to becommensurateif they
share a common subgroup of finite index in each. They are said to becommensurableif a
finite index subgroup of one conjugates withinPSL(2,R) to give a finite index subgroup in
the other.

Warning . We follow the definitions of [7] here. It is also common to use the term
commensurable to denote what they call commensurate!

Theorem A (Vorobets; Gutkin–Judge).If there is a translation covering of(N,Q) by
(M,P), then0(P) and0(Q) are commensurate.
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Corollary A (Gutkin–Judge).If there is an affine covering of(N,Q) by(M,P), then0(P)
and0(Q) are commensurable.

In Lemma 1, we stated that marking extra points on a surface gives rise to subgroups of
the Veech group of the 1-form corresponding to the structure. Here we give a criterion for
when such a structure is no longer commensurable with the original. Recall that acylinder
on a translation surface is a maximal connected collection of homotopic closed geodesics
which have the same direction (by way of the local coordinates fromR2). Themodulusof
a cylinder is the ratio of its height (length in the fixed direction) to its width.

The fundamentalVeech criterionstates that a direction on a translation surface is preserved
by a parabolic element of the Veech group if and only if the cylinders in the direction have
their moduli all rationally related (see [21,23] and also [11]). We call such a direction a
parabolic direction.

We say that a point of a translation surfacesplits a cylinderif there is a direction on the
surface for which the flow decomposes into cylinders such that the point is located in the
interior of some cylinder. Note that if a point splits a cylinder, then it does so by creating
two new (sub)cylinders, each of the same height. We say that a point of a translation surface
irrationally splits a cylinderif the point splits the cylinder such that the widths of the new
subcylinders are irrational multiples of that of the original cylinder.

Lemma 4. LetP be a given marked translation structure on a surface M and letQ, with
P ⊂ Q, be given by marking a point q which irrationally splits a cylinder in a parabolic
direction ofP. Then0(Q) is incommensurate with0(P).

Proof. By Lemma 1,0(Q) has a finite index subgroup which is contained in0(P). We
show that any such subgroup must be of infinite index in0(P).

Note that the cylinder lies in some parabolic direction forP. LetS be a parabolic element
in 0(P) which fixes this direction. It is easily seen that the Veech criterion fails in our
direction forQ. Thus no power ofS can be contained in0(Q). But, each finite index
subgroup of0(P) contains some power ofS. Therefore,0(P) and0(Q) can have no
common subgroup of finite index in each. �

3. Polygonal coverings

In the study of properties of Veech groups, one is quickly led to contemplate translation
covers which are related to the paving of one polygon by another. We thus loosely use the
term polygonal coverings to refer to such translation covers. The fact that one has the explicit
algebraic expressions of [3] for the translation surfaces associated to Euclidean triangles
allows for a combination of algebraic and geometric techniques to be applied for polygonal
coverings which involve only triangles. (In the generic rational polygon setting there is still
an algebraic approach, but the so-called accessory parameters in the Schwarz–Christoffel
map prevent this from being explicit. On the other hand, see [24] for the use of this map in
certain symmetric cases.)
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We establish some notation to be used in the remainder of this paper.

Notation. Let X(p, q, r) andω(p, q, r) be the Riemann surface and its holomorphic
1-form associated to the billiard flow on the Euclidean triangleT (p, q, r). Furthermore, let
0(p, q, r) be the Veech group ofω(p, q, r). Let1(p, q, r) be the Fuchsian triangle group
for the anglesπ/p, π/q, π/r (see [4]).

Veech [21] showed that the following theorem holds

Theorem B (Veech). For eachn ≥ 5,

0(1,1, n− 2) =
{
1(2, n,∞), oddn;
1(m,∞,∞), n = 2m.

The following generalizes an example of[3].

Proposition 1. Fix n ≥ 5 and k with1 ≤ k ≤ b(n − 1)/2c and (k, n) = 1. LetXn :=
X(1,1, n − 2) andY := X(k, k, n − 2k). ThenXn andY are biholomorphically equiv-
alent. Furthermore, Xn is the non-singular Riemann surface associated to the equation
y2 = 1 − xn; the pull-back toXn from Y ofω(k, k, n − 2k) is cxk−1 dx/y for a constant
c = c(n, k).

Proof. Recall that Aurell [3] gave the equationtn = [s(1 − s)]n−k for Y ; in these coordi-
nates, the 1-formω(k, k, n− 2k) is simply ds/t . Of course, one so finds a similar equation
for Xn, but Veech [21] determined thatXn is of the equation announced.

Fix a choice of annth root of 4, which we denote by 41/n. Let g : Xn → Y be given by
(x, y) 7→ ((1 − y)/2, (x/41/n)n−k ) = (s, t). Since(k, n) = 1, there existsr, l ∈ Z such
that(r+ l)n− lk = 1. Letf : Y → X be given by(s, t) 7→ (41/n t l [s(1−s)]r , 1−2s ) =
(x, y). One checks thatf andg are inverses; they give the necessary biholomorphisms.

On Xn, we have 2y dy = −nxn−1 dx, hence dy/xn = (−n/2) x−1 dx/y. Thus,
d((1 − y)/2 ) xn−k = cxk−1 dx/y, for an appropriatec. Therefore, the pull-back from
Y by g of ω(k, k, n− 2k) = ds/t is of the stated form. �

Remark. The translation surfaces defined by some1-formω and its multiple by a non-zero
complex constant c are virtually the same. The action of SL(2,R) on translation surfaces
by way of charts clearly preserves area. Scaling by a real non-zero constant to achieve a
surface of area 1 changes no intrinsic aspect of the surface— in particular, Veech groups
are preserved under this scaling.

As well, rotation by arg(c) (of the charts of an atlas) imposes no intrinsic change—
one merely gives a different choice of standard(vertical) direction. In particular, conjugacy
classes of Veech groups are preserved under such rotation. In fact, such rotation preserves
the point in Teichmüller space corresponding to the1-form, cotangent vectors are rotated.

Thus, we will actually work in the projective space of1-forms, identifying all non-zero
complex multiples of a1-form.
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Remark. In fact, there is no canonical vertical direction in the construction of[10]. The
translation surface constructed allows one to follow the billiard flow in any direction (which
does not encounter a singularity). That is, dividing by the action of the rotation group
SO(2,R) is completely natural here.

Earle and Gardiner [5] show, in our notation, that0(2,2,1) = 1(5,∞,∞). Indeed, by
inspection of their examples, they actually show the following theorem.

Theorem C (Earle–Gardiner).Let the integerk ≥ 2. Then

0(2k − 1,2k − 1,2) = 1(2k,∞,∞), 0(k, k,1) = 1(2k + 1,∞,∞).

Thus, for oddn = 2k+1 the 1-formω(1,1, n−2) andω(k, k,1) onXn both give lattices.
Earle and Gardiner [5] remark that the case ofn = 5 gives two linearly independent 1-form
onX5 which have lattices for Veech groups and note that this is an interesting phenomenon.
Harvey [8,9] points out that this phenomenon may exist for other surfaces. Here we show
that in fact there is no universal bound on the number of 1-forms on a Riemann surface
which have incommensurable lattice Veech groups.

We first determine the Veech group of a certain family of marked translation structures.

Proposition 2. Let j ∈ N, j ≥ 2 andn = 2j + 1. LetXn be the non-singular Riemann
surface of affine equationy2 = 1 − xn and let∞ be the unique point at infinity onXn.
Then0(xj−1 dx/y; ∞ ) = 0(j, j,1).

Proof. It is easily calculated that the genus ofXn is j , and that all of the zeros ofxj−1 dx/y
on that surface occur at(0,±1).

In order to establish our result, we wish to locate the zeros and∞ on a geometric realiza-
tion ofXn. But,Xn isX(j, j,1), the Riemann surface associated toT (j, j,1); furthermore,
by Proposition 1,ω(j, j,1) is the 1-form (up to a negligible constant)xj−1 dx/y onXn.
Earle and Gardiner’s proof of Theorem C begins with the construction of what one recog-
nizes as the surfaceX(j, j,1). This is a 2n-gon with opposite faces identified; it can be
tiled by 2n copies ofT (j, j,1). Zeros for the associated 1-form are found at the external
vertices of this regular figure.

We need to now locate the point∞ on the 2n-gon. To this end, we turn to the Aurell–
Itzykson approach. The Aurell–Itzykson equation for thisXn is tn = [s(1 − s)]j+1. The
appropriate mapg of the proof of Proposition 1 sends(x, y) = (0,±1) to the points where
s = 0 ands = 1. We continue to call the single point at infinity in both coordinate systems
simply∞.

Aurell and Itzykson [3] determined the equation forXn (indeed, for any surface associated
to a rational triangular billiard table) by using the Schwarz triangle function: the upper
half-plane is mapped to the interior of the triangle. Normalization is such that 0, 1 and∞
(on the Riemann sphere) are sent to the vertices of the triangle. Schwarz reflection allows
one to extend the inverse of the triangle map to all of the associated surface. (In particular,
by the famed result of Belyi, every such surface has an equation defined overQ̄— see [25].)
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Fig. 1. Case ofj = 2 :X(2,2,1); horizontal cylinders marked.

The Aurell–Itzykson determination of the equation implies that the vertices of the tiling
of Xn by T (j, j,1) occur wheres ∈ {0,1,∞}. But, we already know that our zeros occur
wheres ∈ {0,1} and lie at the external vertices of the regular figure of Earle and Gardiner.
Hence, the point∞ is at the center (see Fig. 1).

We now show that the Veech group0(ω(j, j,1); ∞) equals0(j, j,1). Following Veech,
Earle and Gardiner identify a generating pair of elements for0(j, j,1): the central rotation
and a parabolic element in the horizontal direction. The first of these clearly fixes the center
of the 2n-gon. The center lies on the boundary of a cylinder for the parabolic element. One
easily checks that this element fixes each point of this boundary. Thus all of0(j, j,1) fixes
the center. (Hence, the Veech group of the surface punctured at the center is exactly the
same as that of the unpunctured surface.) Since this center is indeed the point∞, we have
our equality of Veech groups. �

Remark. Earle and Gardiner[5] also treat the case of 4n-gons with opposite sides iden-
tified. For further treatment of these surfaces, see[2].

We pull-back various of the marked structures of Proposition 2 to find Riemann surfaces
which have numerous 1-forms with non-trivial Veech groups.

Theorem 1. LetL ∈ N, then there exists a Riemann surface with1-formsω1, . . . ,ωL, such
that the0(ωi) are pairwise incommensurable lattices.

Proof. Letm be the product of the firstL odd numbers, starting with 5. Thus, letm(j) =
2j + 1 andm = ∏L+1

j=2 m(j). We use Veech’s equations for the variousXn: y2 = 1 − xn.
For oddn, the non-singular Riemann surfaceXn has a single point at infinity (with respect
to these coordinates). There are mapsfj : Xm → Xm(j) given by(x, y) 7→ (xm/m(j), y).
Note thatfj has its branch points at(0,±1) and at the single point ofXm(j) at infinity
(which we simply denote by∞). Note thatXm also has a single point at infinity, this is the
sole pre-image of∞ underfj .
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Let ωj be the pull-back byfj of xj−1 dx/y on Xm(j). As Z(xj−1 dx/y) = (0,±1),
Lemma 3 and Theorem A show that0(ωj ) is commensurate with0(xj−1 dx/y; ∞ ).
By Proposition 2, this is0(j, j,1). Thus, by Theorem C,0(ωj ) is commensurable with
1(m(j),∞,∞). But, the group1(m(j),∞,∞) is a subgroup of index 2 in the triangle
group1(2,2m(j),∞). Such triangle groups are lattices; since this property is shared by
finite index subgroups, the0(ωj ) are indeed lattices.

Triangle groups are unique up toPSL(2,R) conjugation. Any1(2, k,∞) is hence con-
jugate to the so-called Hecke group of indexk, see say [4]. Now, Leutbecher [14] showed
that (except fork ∈ {3,4,6}) these are all pairwise incommensurable. That is, the0(ωj )

are also pairwise incommensurable. �

Remark. The aforementioned result of Leutbecher has since been greatly generalized by
Margulis[16],see also[15].Briefly, the commensurability class of a non-arithmetic triangle
Fuchsian group possesses a unique maximal element(up to conjugation).

We have just used pull-backs of 1-forms to find many 1-forms on a single Riemann
surface which have lattice Veech groups. We will soon pull-back 1-forms such that the
original 1-form has a lattice Veech group, but the pulled-back 1-form does not. We use the
following proposition in this construction. Note thatXn continues to denote the non-singular
Riemann surface associated to the equationy2 = 1 − xn.

Proposition 3. Letn ≥ 5 be an odd integer and letPn = P(ω(1,1, n−2);p1, p2 ), where
thepi are the points(x, y) = (0,±1) onXn. Then, the Veech group0(Pn) is not a lattice.

Proof. We apply Lemma 4. As Theorem B states, Veech [21] showed that0(1,1, n − 2)
is a lattice. We show that0(Pn) is of infinite index, and thus cannot be a lattice.

In fact, we also return to calculations of Veech [21]. Veech constructs the surfacesXn

by taking two copies of the regularn-gon and gluing them appropriately. While finding his
equation forXn, he shows (by a use of the symmetry group of the surface) that the centers
of these correspond to the points of coordinates(0,±1) [21, Section 4.4].

By the symmetry of his construction, we may choose one of then-gons, with its vertices
at thenth roots of unity. Consider the vertical foliation and its cylinders. Veech [21, Section
5] shows that there are cylinders whose vertical boundaries pass through the variousxj =
cos 2πj/n. Fix thatj is such thatxj+1 < 0< xj . It is easily seen thatj = bn/4c (see Fig. 2).

The marked point of ourn-gon splits the cylinder whose boundaries pass throughxj and
xj+1. By Lemma 4, it suffices to show thatxj is not a rational multiple ofxj − xj+1. Of
course, this is the same as showing thatxj andxj+1 are rationally independent. Up to the
same constant factor which we simply suppress, these areζ j + ζ−j andζ j+1 + ζ−j−1,
whereζ = e2π i/n.

Were(ζ j+1+ζ−j−1)/(ζ j+ζ−j ) rational, then it would be invariant under every element
of the Galois group of the field extensionQ(ζ )/Q. For allnwe are considering, we have the
non-trivial elementσ : ζ 7→ ζ 2. Thus, we will show that(ζ 2j+2+ζ−2j−2)/(ζ 2j +ζ−2j ) =
(ζ j+1 + ζ−j−1)/(ζ j + ζ−j ) is impossible for our value ofj . We clear denominators,



86 P. Hubert, T.A. Schmidt / Journal of Geometry and Physics 35 (2000) 75–91

Fig. 2. Case ofn = 5: a single regular pentagon, with vertical cylinders and center marked.

and haveζ 3j+1 + ζ−3j−1 + ζ j−1 + ζ−j+1 being equal toζ 3j+2 + ζ−3j−2 + ζ j+2 +
ζ−j−2.

If n = 4j + 1, then 3j + 2 ≡ −j + 1 modn and similarly for 3j + 1. Hence if
ζ 3j+1 + ζ−3j−1 + ζ j−1 + ζ−j+1 is equal toζ 3j+2 + ζ−3j−2 + ζ j+2 + ζ−j−2, then
ζ j + ζ−j = ζ j+2 + ζ−j−2. However, by our choice ofj , the first of these is negative
and the second positive. The analogous argument leads to a similar contradiction when
n = 4j + 3. �

Corollary. Let k, l and m be natural numbers, such thatk ≥ 2, l ≥ 5 is odd andm = kl.
If α = xk−1 dx/y on the surfaceXm, then0(α) is not a lattice.

Proof. Let f : Xm → Xl be given by(x, y) → (xk, y). Thenf is branched at the points
of coordinates(0,±1) and (depending uponk) possibly at the single point at infinity. Let
ω = ω(1,1, l − 2); recall thatω has its sole zero at the point at infinity. By Lemma 3,
f : (Xm, f ∗ω) → (Xl,Pl ) is a translation covering. Therefore, by Theorem A,0(f ∗ω) is
commensurable with0(Pl ). But, up to a constant,f ∗ω = xk−1 dx/y. Thus, the proposition
completes the proof. �

Let us use the termVeech group of a (rational angled) polygonto denote the Veech group
of the translation surface defined in the standard [10] manner. We now give an infinite family
of triangles whose Veech groups are not lattices.

Proposition 4. Letn ≥ 5be an odd natural number. Then0(n−2, n−2,4) is not a lattice.

Proof. We give two proofs. Although closely related, these emphasize different aspects of
the surfaces involved.

Algebraic proof.By Proposition 1,ω(n − 2, n − 2,4) is xn−3 dx/y onX2n. Consider
the maph fromX2n to itself which maps(x, y) to (1/x, iy/xn). Let α = x dx/y onX2n.
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Then, pull-back byh of α is (up to constants)

h∗α = h∗x dx/y = x−1(x−2 dx)/x−ny = xn−3 dx/y.

Sinceh is injective, it is clearly unramified. Therefore0(n − 2, n − 2,4) = 0(α). By
the above corollary (withk = 2 andl = n), 0(α) is not a lattice. Therefore our proposition
is proved.

Constructive proof.We begin with the triangleT (n − 2, n − 2,4). The corresponding
translation surface,M := X(n − 2, n − 2,4), will be tiled by 4n copies of this triangle.
We can begin by developing about the vertex of angle 2π/n. That is, we consecutively flip
copies ofT (n − 2, n − 2,4) about this vertex. Consecutive copies under these flips have
opposite orientations. Sincen is odd, after completing an angle of 2π , the next flip gives
a copy which has the opposite orientation from that of the initial copy. Thus this ensuing
copy cannot be identified with the initial copy of the triangle. In fact, one needs an angle
of 4π to complete this conical singular point onM. First, we may taken more copies of
the triangle and place them along the edges of these firstn so as to make a regular stellated
n-gon. To complete the development about the conical point, we take a second stellated
regularn-gon and glue the two along a slit running (straight) from the center to an exterior
vertex of the stellatedn-gon (see Fig. 3).

The single point represented by the centers of these two stellated regularn-gons is a
conical singularity onM of angle 4π ; the point represented by the exterior vertices is also
singular of angle 4π . There are two other singular points, each of angle (n×4(n−2)π/2n =)
(n− 2)2π .

Fig. 3.X(3,3,4) tiled byT (3,3,4).
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Now, we consider the triangleT (1,1, n − 2). Let N := X(1,1, n − 2). Then we can
obtainN by developing 2n copies of the triangle about one of the vertices of angleπ/n. The
regular stellar figure forN so given is, up to identifications on its exterior edges, exactly of
the form of each of those found forM.

Thus, in terms of Riemann surfaces,M is a double cover ofN , which is branched at the
points corresponding to the center and to the exterior vertices. We can either argue with
the Aurell–Itzykson determination of equations (as in the proof of Proposition 2), or take
Veech’s [21] figure forN and cut, translate and paste to find that these branch points are
indeed(x, y) = (0,±1). Thus, by Lemma 3, we have that0(n − 2, n − 2,4) = 0(Pn).
Therefore, by Proposition 3,0(n− 2, n− 2,4) is not a lattice. �

The above corollary and proposition lead to an infinite family of counter-examples to
the naive intuition that if a polygon tiles another (where one admits both translations and
flips across a boundary edge as tiling “moves”), then the Veech groups of these polygons
are commensurable. We thank J. Smillie for pointing out that a remark in passing in [23]
already mentions this aspect of our polygons.

Theorem 2 (Vorobets).There exist polygons P and Q such that P tiles Q by flips and the
Veech groups of the corresponding translation surfaces are not commensurable.

Proof. Fix an odd integern ≥ 5. Consider the right triangleT (2, n−2, n). The associated
surface is formed by 4n copies of this triangle. If we flip the triangle about its right angle,
we findT (4, n− 2, n− 2) andT (1,1, n− 2) (see Fig. 4).

As explained in the constructive proof of Proposition 4, the surface ofX(1,1, n− 2) is
tiled by 2n copies ofT (1,1, n− 2). Indeed, again becausen is odd, one easily verifies that
the surface for this and for the right triangle are translation isomorphic — they can be formed
by taking the same region ofR2 and identifying sides in exactly the same way. By Theorem
B, the Veech group0(1,1, n− 2) is a lattice; it follows that the Veech group0(2, n− 2, n)
is also a lattice. But, Proposition 4 shows that the Veech group ofT (4, n− 2, n− 2) is not

Fig. 4. Case ofn = 5: T (2,3,5), T (4,3,3) andT (1,1,3).
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a lattice. Thus, although the triangleT (2, n − 2, n) tiles T (4, n − 2, n − 2), we find that
their Veech groups are not commensurable. �

There are similar tilings of triangles by triangles where Veech groups are preserved, as
we now show.

Example. Letn = 2m be an even integer,n ≥ 6. Consider the right triangleT (2, n−2, n).
Just as in the above proof, we have the two related trianglesT (2,2,2(n − 2) ) = T (1,1,
n− 2) andT (4, n− 2, n− 2) = T (2,m− 1,m− 1). By Theorem B, the first of these has
Veech group1(m,∞,∞). By Theorem C, the second has the same Veech group. Indeed,
it is easily checked that the surface of this second triangle is isomorphic to the surface of
the right triangle.

This cutting, flipping and then translating, as in the passage fromT (1,1, n − 2) to
T (2,m−1,m−1) above, is an integral step in classification of those acute triangles which
have lattice Veech groups [11].

We now show that Veech groups usually are preserved up to commensurability under
polygonal tiling by flips.

Proposition 5. If a rational polygon has no angles of the formπ/n for integer n, then any
polygon which it tiles by a single flip has a commensurable Veech group. Furthermore, if a
rational polygon has no angles of the form2π/n for integer n, then any polygon which it
tiles by flips has a commensurable Veech group.

Proof. Let Q be a polygon tiled by the polygonP and letM(Q) andM(P) be their
associated surfaces. That there is a covering of the Riemann surfaces determined byM(Q)

andM(P) can be seen for instance by use of Proposition 5.1 of [23]. There it is already
shown that the sole obstruction to the covering ofM(P) by M(Q) being a translation
cover is given by the restriction that the covering map and its local inverse send the sets of
singularities to one another.

The singularities of a translation surface of a polygon can only occur at points which
project to vertices of the polygon. We thus will discuss the set of such points on each of
M(Q) andM(P).

Suppose thatP has no angles of the formπ/n. Then every point ofM(P)which projects
to a vertex ofP is singular. Since the vertices ofQ lie at vertices of paving copies ofP , the
covering map certainly sends the singularities ofM(Q) to those ofM(P).

Continuing with the assumption thatP has no angles of the formπ/n, none of the
vertices ofQ can be of the formπ/n for integern. This follows by simply writing each
angle ofP in the form lπ/m with l, m relatively prime and 2≤ l < 2m. A vertex of
Q has a multiple of such an angle; were this multiple to be 1/n, then l, m would not
be relatively prime. Thus, also every point ofM(Q) which projects to a vertex ofQ is
singular.

It now suffices to show that the inverse images of the singularities ofM(P) are the
singularities ofM(Q). Since every point ofM(P) which projects to a vertex ofP is
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singular, and similarly forM(Q), we need only show that the vertices of the paving copies
of P lie at the vertices ofQ.
1. If Q is the union ofP and a single flip ofP , then each vertex of these two copies ofP

onQ lies at some vertex ofQ.
2. Suppose now thatP has no angles of the form 2π/n. Vertices of paving copies ofP meet

at points ofQ of angles which are integer multiples of the angles ofP ; these multiples
are never equal to 2π , hence vertices of paving copies ofP lie at interior points ofQ.
Our argument showing thatQ has no angles of the formπ/n shows that no paving copies
of P can meet at the interior of an edge ofQ. Hence, the vertices of paving copies ofP
lie at the vertices ofQ. �

Remark. Gutkin and Judge[6,7] have characterized those translation surfaces whose
Veech groups are arithmetic (i.e., commensurable to PSL(2,Z)): these are the surfaces
which can be tiled by translations of Euclidean parallelograms.
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