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Abstract

We discuss branch points of affine coverings and their effects on Veech groups. In particular,
this allows us to show that even if one polygon tiles another, the respective Veech groups are
not necessarily commensurable. We also show that there is no universal bound on the number of
Teichmuiller disks passing through the same point of Teichmdiller space and having incommensurable
lattice Veech groups. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most accessible problems in physics and mathematics would seem to be that
of the dynamics of a particle elastically reflected by the walls of a Euclidean polygon. This
seemingly innocuous problem, generically callelliards, offers interest already in the
case of rational polygons, where all angles are rational multiples idere the phase space
decomposes into invariant surfaces for the natural billiard flow.

The study of this billiard flow leads to quadratic differentials and Teichmdiller space; for
a survey on these matters, see [18]. This machinery has allowed such beautiful results as
Masur’s [17] density of periodic geodesics and the Kerkhoff-Masur—Smillie result [12],
see also [1], on unique ergodicity of the flow (on each invariant surface). These results are
in general true for almost every direction. Veech [21,22] gave explicit examples for which
the billiard flow behaves like the linear flow on the torus: in each direction the flow is either
periodic or it is uniquely ergodic.
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The passage from billiards on a rational polygon to quadratic differentials is fairly natural.
Speaking loosely, instead of following the trajectory of a particle as it reflects off a wall
(i.e., edge), one can instead flip the polygon about the edge. This process defines a surface
(in fact a Riemann surface, see below for references), and a quadratic differential on the
surface. Actually, the quadratic differential that one finds is the square of a holomorphic
1-form. The surface being constructed from pieces of the plane has a locally flat structure
with singularities. Veech had the insight to emphasize self-maps of such surfaces which are
locally affine with respect to the flat structure. The matrices which are the derivatives of
these affine maps form a group, the Veech group. Veech showed that whenever this group
is of finite covolume, one has the above dichotomy for the directions of flow: the flow in
each direction is either periodic or it is uniquely ergodic.

There are various examples known of Veech groups which are lattices [5,11,21-24]; i.e.,
of finite covolume. There are also various results, especially of Gutkin and Judge [6,7] and
Kenyon and Smillie [11], indicating that these are rare.

Here we emphasize coverings of surfaces and pull-backs of forms in order to study
relationships between Veech groups. The use of coverings in the study of Veech groups is
already well established, especially by Vorobets [23] and by Gutkin and Judge. We use an
algebraic approach for which the results and techniques of Aurell and ltzykson [3] are quite
helpful.

Our main results are given as Theorems 1 and 2. We show that there is no universal upper
bound on the number of non-commensurable lattice Veech groups that can be associated to a
single Riemann surface. To this date, explicit examples only showed that this number could
be as large as 2, see [5]. We also give both algebraic and geometric proofs showing that
tiling of rational polygons by way of flipdoes nonecessarily preserve commensurability
of Veech groups of the related surfaces. We thank J. Smillie for pointing out to us that a
remark in passing of Vorobets [23] already points to such counter-examples.

Our techniques are a clear use of ramification in coverings of the type treated by Gutkin—
Judge and Vorobets. We combine this with fundamental work of Gutkin—Judge and
Vorobets (see Theorem A), all eventually based upon the pioneering work of Veech (see
Theorem B).

2. Background: translation structures and Veech groups

A surface is said to havetaanslation structuref it is equipped with a fixed atlas for
which the transition functions are translation&fh Translation structures are most naturally
discussed in terms of holomorphic 1-forms.

There is a natural construction, apparently due to [10], of a surface with translation (also
called flat or Euclidean) structure and conical singularities (see [20] for these terms) directly
related to the billiard flow on a table formed by a rational polygon. Let us discuss the case
of rational triangles.

Notation. Let7 (p, q, r) be the rational Euclidean triangle whose anglegargn, gz /n,
rr/n, wheren = p + g +r and =g.c.d(p, ¢, r) (see Fig. 4).
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By an unfolding process, one follows the straight line paths(@n2g + r) copies of the
triangle. The free edges can be identified so as to obtain a surface with a translation structure.
This construction allows one to pull-backfilom the plane and thus identify a 1-form on the
surface, and thereby the holomorphic structure such that the form is holomorphic, see say
[19]. The actual equation of the surface and the identification of the form were apparently
not given until [3], see also [24]. The surface is the smooth Riemann surface associated to
the equationy? T4+ = xP*" (1 — x)4*", and the form there isxj' y. This follows from an
application of the Schwarz triangle function.

In the other direction, by integrating a holomorphic 1-form on a Riemann surface, one
obtains charts of local coordinates which give the surface a translation structure with conical
singularities at the zeros of the 1-form, again see [20]. Of course, the @ld@pR) has
its usual action ofiR?; by composing this action with the local coordinate functions, one
obtains an action 08L(2, R) on the set of atlases on the surface. Each of the atlases so
found also corresponds to a 1-form. Kerkhoff et al. [12] showed thabtli2, R) orbit of
a holomorphic 1-form is the unit cotangent space to the so- called Teichmiller disk of the
1-form. See [5] for a very clear exposition of these matters.

2.1. Affine functions and Veech groups

Let us fix a formw on a Riemann surfacHd and letZ (w) denote the set of the zeroswof
LetM’ := M\ Z(w). Adiffeomorphismf : M’ — M’ which extends to a homeomorphism
from M to itself is calledaffinewith respect to the translation structure #hinduced by
w if the derivative off is constant in the charts af and is given by some fixed element
A € SL(2, R). Note that this definition requires that the extensiorf @nd its inverse send
Z(w) to itself (permutation of this set is allowed).

Away from zeros o, locally f(z) = Az+c;, where the;; depend only on the chart of
The set of all such functions is called the affine group oAff (w). The Veech grouf, (w),
is the group of matrices representing the derivatives of the affine functions. In fact, Veech
[21] shows that the object of main interest is this group taken up to projective equivalence;
i.e., we need only consider the imagelbfn PSL(2, R). In what follows, we will indeed
simply write " (w) for this corresponding subgroup BSL(2, R).

Each Teichmuiller disk with its so-called Teichmiller metric is isometric to the hyperbolic
plane, thus haPSL(2, R) as full isometry group, see say [5]. Veech also showed that by
way of the isometry"(w) acts discontinuously on the disk of D,,. (In fact, Veech gave
his results in the general setting of quadratic differentials. Now, the square of a 1-form is
indeed a quadratic differential, and see say work of Kra [13], all quadratic differentials
in the Teichmdller disk of a square quadratic differential are of this same type. By tacitly
using the squares of our holomorphic 1-forms where necessary, we continue in our slightly
simplified setting.)

AsT'(w) is a subgroup oPSL(2, R) which acts discontinuously on the hyperbolic plane,
I'(w) is a Fuchsian group. The quotient of the digk by I' (w) is a Riemann surface (with
hyperbolic structure induced by the Teichmdller metric) inside the Riemann moduli space
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of M. A result of Masur implies that this surface cannot be compact. See [8,9] for some
remarks on the possible relationship of this new surfac¥ to

In the setting of polygonal billiards, Veech demonstrated a direct relationship between a
certain dynamical zeta function of the system and the hyperbolic metric of the new surface.
He also calculated the Veech groups for a particular set of examples. In the ensuing decade,
there have been some more examples discovered and various results obtained which indicate
that the Veech group is rarely non-trivial.

2.2. Marking extra points

It is convenient to consider translation structures with some removable singularities
marked. We introduce notation for this purpose.

Notation. Let P(w; {p1, ..., p,}) denote the translation structure on a surfatgiven
by the 1-formw and having marked pointgy, ... , p, as well as the zeros @b. Given
P of this sort, letM” be M (having the structure ab) with both Z(w) and the set of the
pi removed. The affine groug\ff(P), for such a marked translation structure is the group
of the affine diffeomorphisms which restrict so as to ta& to itself. The Veech group,
['(P), is then the derivatives of these affine diffeomorphisms.

For a fixed surfacé/, and marked structure® and Q, we write? C Q if the marked
structures have the same underlying 1-form, and the marked poiRtsue amongst those
of 0.

Recall that a subgroup ¢1SL(2, R) is called alattice if it acts discontinuously on the
hyperbolic plane and the corresponding quotient is of finite volume. The following lemma
was implied in a message from C. Judge.

Lemma 1. LetP and Q, P C Q, be as above. Then boil(P) andI"(Q) are subgroups
of I'(w). Furthermore, there is a finite index subgrougaf@) which is contained ii" (P).
If ['(Q) is a lattice, then so ar€ (P) and T (w).

Proof. We show thatAff(P) C Aff(w). For this, it suffices that any affine diffeomorphism
takingM \ {p1,..., p,} to itself can be extended so as to take the set opth®e itself.
The diffeomorphism o/ clearly acts as a permutation @w) U {p;}.

A diffeomorphism cannot remove any singularity of the translation structure which arises
as anelement df (w). (Indeed, the order of a zero of the 1-formis invariant.) Thus, itin fact
permutes the;. That is, the restriction td/’ gives an element dkff(w). These arguments
clearly show thatAff(Q) c Aff(w) as well.

Suppose that the marked points @f in addition to those ofP, comprise the set
{q1, ..., gm}- The previous paragraph shows that edch Aff(Q) naturally gives a permu-
tation f on{p1, ..., pa}U{q1, ..., gu}. This defines a group homomorphism fréi(Q)
to the symmetric grouyn{{p1, ... , pn}YU{q1, - - . , gm}). The kernel of this homorphism
is a finite index subgroup d&ff(Q) which acts as the trivial permutation ¢ps, ... , p,}.
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Hence, this finite index subgroup Aff(Q) is contained inAff(P). Therefore'(Q) has a
finite index subgroup contained IN(P).

If a Fuchsian group has finite covolume, then so does any of its finite index subgroups.
Also if any subgroup of a Fuchsian group has finite covolume, then the group itself does.
Hence, we conclude thatlf(Q) is a lattice, then so aré(P) andI' (w). O

2.3. Translation and affine coverings

We say that a magf : M — N gives atranslation coveringof (N, Q) by (M, P)
if the restrictionf : M” — N” is such thaty o f o ¢~ are translations wherg and
¢ are the (various appropriate choices of the) local coordinates for the atlageard
Q, respectively. Note that a translation covering is in particular a holomorphic (ramified)
covering of the corresponding Riemann surfaces.

Similarly, we say that a may gives anaffine coveringof (N, Q) by (M, P) if the
restriction f : M” — N’ is such that the aforementioned compositions are of the form
Az+ ¢; ; whereA is a fixed matrix inSL(2, R), but the translation vectos ; may vary
with the choice of charts. Note that an affine covering is in particular a quasi-conformal
(ramified) covering of the corresponding Riemann surfaces.

Let B be any matrix inSL(2, R). We define(M, B o P) by replacing the coordinate
functions of the translation structure @¥, P) by their post-composition witlB. Let f
give an affine covering ofN, Q) by (M, P). If A is the matrix of the derivative of, then
we definef4 to be the covering ofN, Q) by (M, A o P). Similarly, we definef, to be
the covering of N, A~1 o Q) by (M, P). The following can be found in [23].

Lemma 2. Let f give an affine covering v, Q) by (M, P). Let A be the matrix of the
derivative of f. Then bothf4 and f, are translation coverings

Proof. This follows by simply writing out the compositions which occur in the definition
of an affine covering. O

Remark. As indicated in Sectiod background, there is of course a precise technical
definition of the term “Teichmuller disk”, again see §8}. More immediate in our setting

is the idea of the unit cotangent space of a Teichmuller disk. This is the set of translation
surfaces which admit an affine covering of degree 1 to some fixed translation surface. This
is, itis the set of surfaces given by the action of5IR) on the atlas of the fixed translation
surface. Each translation surface has a natural marked vertical direction, given by the
pull-back of the vertical lines d&?. The Teichmiiller disk corresponding to our cotangent
space is given by forgetting these marked directienthis indeed allows one to pass from
cotangent vector to basepoint in the disk. Note that this is morally equivalent to identifying
points in the cotangent space in the sam&ZS@)-orbit.

Remark. From Lemma, by a change of surface in either the Teichmdller disk of M or in
that of N, we can replace an affine coverifig M — N by a translation covering. Thus,
we may assume that f is a (ramified) covering of Riemann sutfaces
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2.4. Pulling-back 1-forms

Let f : M — N be a holomorphic map of Riemann surfaces ana 1-form onN.
Then the pull-backf*« is a 1-form onM. The following is related to a discussion in [6].
Recall that the ramification points gf are those points o8/ where the derivative of
vanishes, let us denote these B§f’). The branch points of are the images undgf of
the ramification points, let us denote themHy f).

Lemma3. Letf : M — N be aholomorphic map of Riemann surfaces aradl-form on
N. LetS be the union of Brf) and any set of points of; let 7 = f~1(S).If A = P(a; S)
andB = P(f*a; T), then the magf gives a translation covering @iV, A) by (M, B).

Proof. To be a translation covering, must in particular send the marked pointg bf, B)
to those of NV, .A). Now, the zeros of *a are f ~1 Z(«) UZ(f"). Indeed, an easy calculation
shows that iff is locally of the forms — " =: z and« is locally of the formz¢ dz, then
f*a is of the formrt ¢tV =1dr. Thus, f sendsZ (f*«) to Z(«) U Br(f). By definition, f
sends/ to S.
As well, the marked points ofN, .A) must have as pre-image those(af, 3). Now,
f~Y(Z(a))isclearly contained iZ ( f*«). Again by definition, the inverse image&is 7.
Recall that the local coordinates for the atlas induced laye given by integration of
« on N. Those of f*« are given by a change of variables in the same manner. That is,
fixing 1g, not a zero off *a on M, local coordinates are given lpy(r) = ft;f*a. But, then

o) = ]f((t;))a Hence, the images of the coordinate functions for the atlg&*aefequal
those of the corresponding coordinate functions of the atlasidénce,f gives a covering

of N” by M” which preserves translation structure. As we have already shown that the
marked points have appropriate images ungland its inverse;s does give a translation
covering. O

Remark. In the above lemma, one can remove thefset(S) N Z(f*«) from 7. This is
as for anyl4, the zeros off *«a are marked points foP ( f*a; U).

2.5. Commensurability results

Given a general translation or affine covering 8f, Q) by (M, P), it seems unclear as
to exactly howl" (P) andT"(Q) are related. There is, however, some vague knowledge of
their relationship. Recall that subgroupsR8L(2, R) are said to beommensuraté they
share a common subgroup of finite index in each. They are said¢orhmensurablé a
finite index subgroup of one conjugates witlRiBL(2, R) to give a finite index subgroup in
the other.

Warning. We follow the definitions of [7] here. It is also common to use the term
commensurable to denote what they call commensurate!

Theorem A (Vorobets; Gutkin—Judge)lf there is a translation covering ofN, Q) by
(M, P), thenl"(P) andI"(Q) are commensurate
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Corollary A (Gutkin—Judge).If there is an affine covering @iV, Q) by (M, P), thenI" (P)
andI"(Q) are commensurable

In Lemma 1, we stated that marking extra points on a surface gives rise to subgroups of
the Veech group of the 1-form corresponding to the structure. Here we give a criterion for
when such a structure is no longer commensurable with the original. Recalldyiatider
on a translation surface is a maximal connected collection of homotopic closed geodesics
which have the same direction (by way of the local coordinates ®&jnThemodulusof
a cylinder is the ratio of its height (length in the fixed direction) to its width.

The fundamentaleech criteriorstates that a direction on atranslation surface is preserved
by a parabolic element of the Veech group if and only if the cylinders in the direction have
their moduli all rationally related (see [21,23] and also [11]). We call such a direction a
parabolic direction

We say that a point of a translation surfasits a cylindeiif there is a direction on the
surface for which the flow decomposes into cylinders such that the point is located in the
interior of some cylinder. Note that if a point splits a cylinder, then it does so by creating
two new (sub)cylinders, each of the same height. We say that a point of a translation surface
irrationally splits a cylinderif the point splits the cylinder such that the widths of the new
subcylinders are irrational multiples of that of the original cylinder.

Lemma 4. Let P be a given marked translation structure on a surface M an@ewith
P c Q, be given by marking a point q which irrationally splits a cylinder in a parabolic
direction of P. ThenI'(Q) is incommensurate with (P).

Proof. By Lemma 1,I'(Q) has a finite index subgroup which is contained’i¢). We
show that any such subgroup must be of infinite indek (#®).

Note that the cylinder lies in some parabolic directionfot_et S be a parabolic element
in T'(P) which fixes this direction. It is easily seen that the Veech criterion fails in our
direction for Q. Thus no power ofS can be contained if'(Q). But, each finite index
subgroup ofl"(P) contains some power df. Therefore,I'(P) andI'(Q) can have no
common subgroup of finite index in each. O

3. Polygonal coverings

In the study of properties of Veech groups, one is quickly led to contemplate translation
covers which are related to the paving of one polygon by another. We thus loosely use the
term polygonal coverings to refer to such translation covers. The fact that one has the explicit
algebraic expressions of [3] for the translation surfaces associated to Euclidean triangles
allows for a combination of algebraic and geometric techniques to be applied for polygonal
coverings which involve only triangles. (In the generic rational polygon setting there is still
an algebraic approach, but the so-called accessory parameters in the Schwarz—Christoffel
map prevent this from being explicit. On the other hand, see [24] for the use of this map in
certain symmetric cases.)
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We establish some notation to be used in the remainder of this paper.

Notation. Let X (p, ¢,r) andw(p, ¢q,r) be the Riemann surface and its holomorphic
1-form associated to the billiard flow on the Euclidean triafgie, ¢, r). Furthermore, let
'(p, q,r) be the Veech group @(p, ¢, r). Let A(p, ¢, r) be the Fuchsian triangle group
for the anglest/p, n/q, = /r (see [4]).

Veech [21] showed that the following theorem holds

Theorem B (Veech). For eachn > 5,

A2, n, 00), oddy;

ra,ln—2 =
(L, Ln ) {A(m,oo,oo), n=2m.

The following generalizes an exampleg8jf

Proposition 1. Fix n > 5and k withl < k < |[(n — 1)/2] and (k,n) = 1. LetX,, :=
X1,1,n—2)andY := X(k,k,n — 2k). ThenX, andY are biholomorphically equiv-
alent. Furthermore X, is the non-singular Riemann surface associated to the equation
y? = 1 — x"; the pull-back toX,, from Y ofw(k, k, n — 2k) is c¥~1dx/y for a constant
c=c(n,k).

Proof. Recall that Aurell [3] gave the equatiofi = [s(1 — 5)]"* for Y; in these coordi-
nates, the 1-form (k, k, n — 2k) is simply ds/¢. Of course, one so finds a similar equation
for X,,, but Veech [21] determined that, is of the equation announced.

Fix a choice of amth root of 4, which we denote by!4'. Letg : X, — Y be given by
(x,y) > (1= y)/2, (x/4Y"=ky = (s,1). Since(k, n) = 1, there exists, [ € Z such
that(r+)n—lk = 1.Letf : ¥ — X be givenby(s, t) — (4" ' [s(1—5)]", 1—2s) =
(x, y). One checks thaf andg are inverses; they give the necessary biholomorphisms.

On X,, we have 2dy = —nx*"1dx, hence ¢/x" = (—n/2)x 1dx/y. Thus,
d((1 — y)/2)x"* = cx~1dx/y, for an appropriate. Therefore, the pull-back from
Y by g of w(k, k,n — 2k) = ds/t is of the stated form. O

Remark. The translation surfaces defined by satferm» and its multiple by a non-zero
complex constant ¢ are virtually the same. The action @23R) on translation surfaces
by way of charts clearly preserves area. Scaling by a real non-zero constant to achieve a
surface of area 1 changes no intrinsic aspect of the surfade particular, Veech groups
are preserved under this scaling
As well, rotation by arg(c) (of the charts of an atlgsmposes no intrinsic change-
one merely gives a different choice of stand@eltical) direction. In particular, conjugacy
classes of Veech groups are preserved under such rotation. In fact, such rotation preserves
the point in Teichmdiller space corresponding to 1h®rm, cotangent vectors are rotated
Thus, we will actually work in the projective spaceldiorms, identifying all non-zero
complex multiples of &-form.
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Remark. In fact, there is no canonical vertical direction in the constructionjidf]. The
translation surface constructed allows one to follow the billiard flow in any direction (which
does not encounter a singularity). That is, dividing by the action of the rotation group
SQ2, R) is completely natural here

Earle and Gardiner [5] show, in our notation, tig®, 2, 1) = A(5, oo, 00). Indeed, by
inspection of their examples, they actually show the following theorem.

Theorem C (Earle—Gardiner) Let the integek > 2. Then
2k —1,2k—1,2) = A(2k, 00, 00), 'k, k,1) = A2k + 1, 00, 00).

Thus, forodd: = 2k+1the 1-formw (1, 1, n—2) andw (k, k, 1) on X,, both give lattices.
Earle and Gardiner [5] remark that the case ef 5 gives two linearly independent 1-form
on X5 which have lattices for Veech groups and note that this is an interesting phenomenon.
Harvey [8,9] points out that this phenomenon may exist for other surfaces. Here we show
that in fact there is no universal bound on the number of 1-forms on a Riemann surface
which have incommensurable lattice Veech groups.

We first determine the Veeech group of a certain family of marked translation structures.

Proposition 2. Letj € N, j > 2andn = 2j + 1. Let X,, be the non-singular Riemann
surface of affine equatiop? = 1 — x” and letoo be the unique point at infinity oX,,.
Thenl'(x/~tdx/y; c0) =T(j, j, ).

Proof. Itis easily calculated that the genusXyf is j, and that all of the zeros af 1 dx /y
on that surface occur &b, +1).

In order to establish our result, we wish to locate the zerosar a geometric realiza-
tionof X,,. But, X,, is X (J, j, 1), the Riemann surface associated@1q, j, 1); furthermore,
by Proposition 1w (j, j, 1) is the 1-form (up to a negligible constant)=1 dx/y on X,,.

Earle and Gardiner’s proof of Theorem C begins with the construction of what one recog-
nizes as the surfack(j, j, 1). This is a 2-gon with opposite faces identified; it can be
tiled by 2: copies of7(j, j, 1). Zeros for the associated 1-form are found at the external
vertices of this regular figure.

We need to now locate the poind on the 2-gon. To this end, we turn to the Aurell-
Itzykson approach. The Aurell-ltzykson equation for thisis t* = [s(1 — 5)]/*1. The
appropriate mag of the proof of Proposition 1 sends, y) = (0, +1) to the points where
s = 0 ands = 1. We continue to call the single point at infinity in both coordinate systems
simply co.

Aurell and Itzykson [3] determined the equation }r (indeed, for any surface associated
to a rational triangular billiard table) by using the Schwarz triangle function: the upper
half-plane is mapped to the interior of the triangle. Normalization is such that 0, &and
(on the Riemann sphere) are sent to the vertices of the triangle. Schwarz reflection allows
one to extend the inverse of the triangle map to all of the associated surface. (In particular,
by the famed result of Belyi, every such surface has an equation define@ evesee [25].)
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Fig. 1. Case off = 2 : X (2, 2, 1); horizontal cylinders marked.

The Aurell-ltzykson determination of the equation implies that the vertices of the tiling
of X, by T(j, j, 1) occur wheres € {0, 1, co}. But, we already know that our zeros occur
wheres € {0, 1} and lie at the external vertices of the regular figure of Earle and Gardiner.
Hence, the pointo is at the center (see Fig. 1).

We now show that the Veech groligw (j, j, 1); oo) equald(j, j, 1). Following Veech,

Earle and Gardiner identify a generating pair of element§{gr j, 1): the central rotation

and a parabolic element in the horizontal direction. The first of these clearly fixes the center
of the 2:-gon. The center lies on the boundary of a cylinder for the parabolic element. One
easily checks that this element fixes each point of this boundary. Thusi&ljof, 1) fixes

the center. (Hence, the Veech group of the surface punctured at the center is exactly the
same as that of the unpunctured surface.) Since this center is indeed thecpaiethave

our equality of Veech groups. O

Remark. Earle and Gardinef5] also treat the case of 4n-gons with opposite sides iden-
tified. For further treatment of these surfaces, Ee

We pull-back various of the marked structures of Proposition 2 to find Riemann surfaces
which have numerous 1-forms with non-trivial Veech groups.

Theorem 1. LetL € N, then there exists a Riemann surface viitformswy, . .., wr, such
that thel' (w;) are pairwise incommensurable lattices

Proof. Letm be the product of the firdt odd numbers, starting with 5. Thus, let;) =

2j 4+ 1andm = ]_[f;rzlm(j). We use Veech’s equations for the variots y2 = 1 — x”.
For oddn, the non-singular Riemann surfake has a single point at infinity (with respect
to these coordinates). There are mgps X, — Xu(j) given by(x, y) = (x™/mW) | y),
Note that f; has its branch points &0, +1) and at the single point aX,,;y at infinity
(which we simply denote byo). Note thatX,, also has a single point at infinity, this is the
sole pre-image ofo under f;.
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Let w; be the pull-back byf; of x/=1dx/y on X,.(;). As Z(x/~1dx/y) = (0, £1),
Lemma 3 and Theorem A show thBi{w;) is commensurate With' (x/ L dx /y; 00).

By Proposition 2, this ig°(j, j, 1). Thus, by Theorem (' (w;) is commensurable with
A(m(j), 0o, 00). But, the groupA(m(j), oo, oo) is a subgroup of index 2 in the triangle
groupA(2, 2m(j), co). Such triangle groups are lattices; since this property is shared by
finite index subgroups, thé(w;) are indeed lattices.

Triangle groups are unique up RSL(2, R) conjugation. AnyA(2, k, co) is hence con-
jugate to the so-called Hecke group of indexsee say [4]. Now, Leutbecher [14] showed
that (except fok € {3, 4, 6}) these are all pairwise incommensurable. That istte;)
are also pairwise incommensurable. O

Remark. The aforementioned result of Leutbecher has since been greatly generalized by
Margulis[16], see als¢15]. Briefly, the commensurability class of a non-arithmetic triangle
Fuchsian group possesses a unigue maximal elefuertb conjugatioin

We have just used pull-backs of 1-forms to find many 1-forms on a single Riemann
surface which have lattice Veech groups. We will soon pull-back 1-forms such that the
original 1-form has a lattice Veech group, but the pulled-back 1-form does not. We use the
following proposition in this construction. Note th¥€} continues to denote the non-singular
Riemann surface associated to the equatfr 1 — x".

Proposition 3. Letn > 5be an odd integer and I, = P(w (1, 1, n —2); p1, p2), where
the p; are the pointgx, y) = (0, 1) on X,,. Then, the Veech group(P,) is not a lattice

Proof. We apply Lemma 4. As Theorem B states, Veech [21] showedttfatl, n — 2)
is a lattice. We show thdt(P,) is of infinite index, and thus cannot be a lattice.

In fact, we also return to calculations of Veech [21]. Veech constructs the suXgces
by taking two copies of the regulargon and gluing them appropriately. While finding his
equation forX,,, he shows (by a use of the symmetry group of the surface) that the centers
of these correspond to the points of coordindfest1) [21, Section 4.4].

By the symmetry of his construction, we may choose one ofitgens, with its vertices
at thenth roots of unity. Consider the vertical foliation and its cylinders. Veech [21, Section
5] shows that there are cylinders whose vertical boundaries pass through the various
cos 2rj/n.Fixthatjissuchthat; 1 < 0 < x;.Itiseasily seenthagt= |n/4| (seeFig. 2).

The marked point of oue-gon splits the cylinder whose boundaries pass throygind
xj4+1. By Lemma 4, it suffices to show that is not a rational multiple of; — x; 1. Of
course, this is the same as showing thaandx ;1 are rationally independent. Up to the
same constant factor which we simply suppress, these/ase 7/ and¢/*1 4+ ¢ =71,
where¢ = e¥7i/n,

Were(¢/t14-¢=771) /(¢7 4+ ¢~ /) rational, then it would be invariant under every element
of the Galois group of the field extensi@(¢)/Q. For allz we are considering, we have the
non-trivial element : ¢ — ¢2. Thus, we will show thats 2/+2+ ¢ =2/-2) /(2] 4-¢ 2]y =
(¢t 4+ ¢=77Y /(¢ + ¢ 7)) is impossible for our value of. We clear denominators,
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Fig. 2. Case oft = 5: a single regular pentagon, with vertical cylinders and center marked.

and haver3/+1 4 ¢=3/=1 4 /=1 4 =i+1 peing equal ta;¥/*2 4 =32 4 i+2 4
;I
If n = 4j+1,then 3 +2 = —j 4+ 1 modn and similarly for 3 + 1. Hence fif
§3j+l + {*3]'*1 + é-j*l + é-*j+l is equal t0§-3j+2 + {73]'72 + §j+2 + é-fjfz, then
I+ ¢77 = ¢7t2 4 ¢=7=2 However, by our choice of, the first of these is negative
and the second positive. The analogous argument leads to a similar contradiction when
n=4j+3. U

Corollary. Letk, | and m be natural numbers, such that 2,/ > 5is odd andn = kl.
If « = x*~1dx/y on the surfaceX,,, thenI"(«) is not a lattice

Proof. Let f : X,, — X; be given by(x, y) — (x*, y). Then f is branched at the points
of coordinateg0, +1) and (depending upok) possibly at the single point at infinity. Let
o = w(l, 1,1 — 2); recall thatw has its sole zero at the point at infinity. By Lemma 3,
[ (X, ffw) - (X;, Pp) is atranslation covering. Therefore, by TheorenTAf*w) is
commensurable with (7;). But, up to a constanf;*» = x*~1dx/y. Thus, the proposition
completes the proof. O

Let us use the terdeech group of a (rational angled) polygtmdenote the Veech group
of the translation surface defined in the standard [10] manner. We now give an infinite family
of triangles whose Veech groups are not lattices.

Proposition 4. Letn > 5be an odd natural number. Théhn — 2, n — 2, 4) is not a lattice

Proof. We give two proofs. Although closely related, these emphasize different aspects of
the surfaces involved.

Algebraic proof.By Proposition 1w(n — 2,n — 2, 4) is x"~3dx/y on X»,. Consider
the maph from X, to itself which map<x, y) to (1/x,iy/x"). Lete = xdx/y on X»,.
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Then, pull-back by: of « is (up to constants)
o =h*xdx/y = x 2(x2dx)/x "y = x"3dx/y.

Sincen is injective, it is clearly unramified. Therefoi&n — 2,n — 2,4) = I'(«). By
the above corollary (witkh = 2 and/ = n), I'(«) is not a lattice. Therefore our proposition
is proved.

Constructive proofWe begin with the triangld (n — 2, n — 2, 4). The corresponding
translation surfacel = X(n — 2,n — 2, 4), will be tiled by 4: copies of this triangle.

We can begin by developing about the vertex of angl¢/2 That is, we consecutively flip
copies of T (n — 2, n — 2, 4) about this vertex. Consecutive copies under these flips have
opposite orientations. Sineeis odd, after completing an angle of 2the next flip gives

a copy which has the opposite orientation from that of the initial copy. Thus this ensuing
copy cannot be identified with the initial copy of the triangle. In fact, one needs an angle
of 47 to complete this conical singular point @. First, we may take more copies of

the triangle and place them along the edges of thesa:frstas to make a regular stellated
n-gon. To complete the development about the conical point, we take a second stellated
regularr-gon and glue the two along a slit running (straight) from the center to an exterior
vertex of the stellated-gon (see Fig. 3).

The single point represented by the centers of these two stellated regudars is a
conical singularity onV/ of angle 4r; the point represented by the exterior vertices is also
singular of angle #. There are two other singular points, each of angle4(n—2)z /2n =)
(n—2)2r.

Fig. 3.X(3, 3, 4) tiled by 7 (3, 3, 4).
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Now, we consider the triangl@ (1, 1,n — 2). Let N := X(1,1,n — 2). Then we can
obtainN by developing 2 copies of the triangle about one of the vertices of angle. The
regular stellar figure foN so given is, up to identifications on its exterior edges, exactly of
the form of each of those found fax.

Thus, in terms of Riemann surfacesg,is a double cover oV, which is branched at the
points corresponding to the center and to the exterior vertices. We can either argue with
the Aurell-ltzykson determination of equations (as in the proof of Proposition 2), or take
Veech’s [21] figure forN and cut, translate and paste to find that these branch points are
indeed(x, y) = (0, £1). Thus, by Lemma 3, we have thBtn — 2,n — 2,4) = T'(P,).
Therefore, by Proposition 3,(n — 2, n — 2, 4) is not a lattice. O

The above corollary and proposition lead to an infinite family of counter-examples to
the naive intuition that if a polygon tiles another (where one admits both translations and
flips across a boundary edge as tiling “moves”), then the Veech groups of these polygons
are commensurable. We thank J. Smillie for pointing out that a remark in passing in [23]
already mentions this aspect of our polygons.

Theorem 2 (Morobets). There exist polygons P and Q such that P tiles Q by flips and the
Veech groups of the corresponding translation surfaces are not commensurable

Proof. Fix an odd integer > 5. Consider the right trianglg (2, n — 2, n). The associated
surface is formed byrcopies of this triangle. If we flip the triangle about its right angle,
we find7 (4, n —2,n —2) and7 (1, 1, n — 2) (see Fig. 4).

As explained in the constructive proof of Proposition 4, the surfacé@f 1, n — 2) is
tiled by 21 copies of7 (1, 1, n — 2). Indeed, again becausds odd, one easily verifies that
the surface for this and for the right triangle are translation isomorphic —they can be formed
by taking the same region & and identifying sides in exactly the same way. By Theorem
B, the Veech group'(1, 1, n — 2) is a lattice; it follows that the Veech grodfy2, n — 2, n)
is also a lattice. But, Proposition 4 shows that the Veech grodp(éfn — 2, n — 2) is not

1

Fig. 4. Caseoh = 5:7(2,3,5),7(4,3,3) and7 (1, 1, 3).



P. Hubert, T.A. Schmidt/Journal of Geometry and Physics 35 (2000) 75-91 89

a lattice. Thus, although the triandlg2, n — 2, n) tiles 7 (4, n — 2, n — 2), we find that
their Veech groups are not commensurable. O

There are similar tilings of triangles by triangles where Veech groups are preserved, as
we now show.

Example. Letn = 2m be an even integet, > 6. Consider the right triangl€(2, n — 2, n).

Just as in the above proof, we have the two related triang(@s2, 2(n — 2)) = 7(1, 1,
n—2)and7 (4, n—2,n—2) =T (2,m—1 m—1). By Theorem B, the first of these has
Veech groupA (m, oo, 00). By Theorem C, the second has the same Veech group. Indeed,
it is easily checked that the surface of this second triangle is isomorphic to the surface of
the right triangle.

This cutting, flipping and then translating, as in the passage ffat 1, n — 2) to
T2, m—1, m—1)above, is an integral step in classification of those acute triangles which
have lattice Veech groups [11].

We now show that Veech groups usually are preserved up to commensurability under
polygonal tiling by flips.

Proposition 5. If a rational polygon has no angles of the forrin for integer n, then any
polygon which it tiles by a single flip has a commensurable Veech group. Furthermore, if a
rational polygon has no angles of the fo2n/n for integer n, then any polygon which it
tiles by flips has a commensurable Veech group

Proof. Let Q be a polygon tiled by the polygo® and letM(Q) and M (P) be their
associated surfaces. That there is a covering of the Riemann surfaces determifgd)by
and M (P) can be seen for instance by use of Proposition 5.1 of [23]. There it is already
shown that the sole obstruction to the coveringtP) by M(Q) being a translation
cover is given by the restriction that the covering map and its local inverse send the sets of
singularities to one another.

The singularities of a translation surface of a polygon can only occur at points which
project to vertices of the polygon. We thus will discuss the set of such points on each of
M(Q) andM (P).

Suppose thaP has no angles of the formy/n. Then every point oM (P) which projects
to a vertex ofP is singular. Since the vertices ¢flie at vertices of paving copies &f, the
covering map certainly sends the singularitie36fQ) to those ofM (P).

Continuing with the assumption th& has no angles of the form/», none of the
vertices ofQ can be of the formr/n for integern. This follows by simply writing each
angle of P in the formix/m with [, m relatively prime and 2< [ < 2m. A vertex of
0 has a multiple of such an angle; were this multiple to be,then!/, m would not
be relatively prime. Thus, also every point #(Q) which projects to a vertex of) is
singular.

It now suffices to show that the inverse images of the singularitie® @P) are the
singularities of M (Q). Since every point of\/(P) which projects to a vertex oP is
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singular, and similarly foM (Q), we need only show that the vertices of the paving copies
of P lie at the vertices 0D).
1. If Q is the union ofP and a single flip ofP, then each vertex of these two copiesrof
on Q lies at some vertex of.
2. Suppose now thdt has no angles of the formm2 . Vertices of paving copies af meet
at points ofQ of angles which are integer multiples of the angle®othese multiples
are never equal tor2 hence vertices of paving copies Bflie at interior points ofQ.
Our argument showing th& has no angles of the formy/n shows that no paving copies
of P can meet at the interior of an edge®@f Hence, the vertices of paving copieshf
lie at the vertices o). O

Remark. Gutkin and Judgd6,7] have characterized those translation surfaces whose
Veech groups are arithmetic (i.e., commensurable to(RS3L)): these are the surfaces
which can be tiled by translations of Euclidean parallelograms
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